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ARTICLE

Identification of the Genetic Basis for Complex Disorders by Use
of Pooling-Based Genomewide Single-Nucleotide–Polymorphism
Association Studies
John V. Pearson,* Matthew J. Huentelman,* Rebecca F. Halperin, Waibhav D. Tembe,
Stacey Melquist, Nils Homer, Marcel Brun, Szabolcs Szelinger, Keith D. Coon, Victoria L. Zismann,
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Heike Kölsch, Magdalini Tsolaki, Makrina Daniilidou, Eric M. Reiman, Andreas Papassotiropoulos,
Michael L. Hutton, Dietrich A. Stephan, and David W. Craig

We report the development and validation of experimental methods, study designs, and analysis software for pooling-
based genomewide association (GWA) studies that use high-throughput single-nucleotide–polymorphism (SNP) geno-
typing microarrays. We first describe a theoretical framework for establishing the effectiveness of pooling genomic DNA
as a low-cost alternative to individually genotyping thousands of samples on high-density SNP microarrays. Next, we
describe software called “GenePool,” which directly analyzes SNP microarray probe intensity data and ranks SNPs by
increased likelihood of being genetically associated with a trait or disorder. Finally, we apply these methods to experimental
case-control data and demonstrate successful identification of published genetic susceptibility loci for a rare monogenic
disease (sudden infant death with dysgenesis of the testes syndrome), a rare complex disease (progressive supranuclear
palsy), and a common complex disease (Alzheimer disease) across multiple SNP genotyping platforms. On the basis of
these theoretical calculations and their experimental validation, our results suggest that pooling-based GWA studies are
a logical first step for determining whether major genetic associations exist in diseases with high heritability.
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Genomewide association (GWA) studies that use hundreds
of thousands of SNPs have the potential to revolutionize
our ability to identify the genetic influences of complex
traits and diseases. Although potentially allowing for the
identification of common variants to complex disease,
GWA studies often require millions of dollars to complete
and, as such, are beyond the reach of many research
groups. Despite their inherent high costs, these studies
will remain one of the best ways to study the genetic basis
of complex diseases in a hypothesis-free study design.
GWA studies are typically designed with three phases: (I)
individual genotyping of �250,000 SNPs across hundreds
to thousands of individuals, (II) validation of the most
significant SNPs (typically tens to thousands of SNPs) by
individual genotyping in new cohorts, and (III) fine-map-
ping SNPs adjacent to the validated SNPs (generally only
a few regions) and/or validation in additional cohorts.
One possible approach to reducing the overall cost of
GWA studies is to replace individual genotyping in phase
I with genotyping (or allelotyping) of pooled genomic
DNA.

Several previous reports have investigated the feasibility

of pooling on SNP genotyping microarrays (or related
technologies). With a few exceptions, these reports have
focused on predicting allelic frequencies across thousands
of SNPs rather than on the effectiveness of pooling in
identifying the genetic basis of complex disorders.1–21 In-
deed, it is not yet clear whether predicting allelic fre-
quency to within 2% accuracy (as is frequently reported)
is sufficient, when �250,000 SNPs have incremental allelic
frequency differences that vary only between 0% and per-
haps a maximum of 10%–15%. Simply, the imprecision
of �250,000 pooled measurements may change a SNP
ranked in the top 100 SNPs to a rank that misses a phase
II cutoff—for example, to the top 1,000 SNPs. For instance,
if the true allelic frequency difference between cases and
controls is 11.0% for the best SNP (of 250,000 SNPs) and
is 10.0% for the 1,000th best SNP, can we identify correctly
the genetic loci when our measurement error is on the
order of 2%? Simply by chance and with a 2% measure-
ment error, we may predict the true best SNP at 9.5% or
we may measure any one of several thousand other SNPs
falsely at 111.0%. Clearly, multiple testing and imprecise
measurements of allelic frequency make it difficult to ac-
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Table 1. Single-Marker Analysis of Pooled GWA Data from Three Disorders with Known Associated Genetic Loci

Analysis Disorder Variant OR

No. of Cases,
No. of Controls

(Ethnicity)
Pooling Rank
(by GenePool)

Approximate
No. of SNPs

in LD
( )2r 1 .5 Platform

Arrays
per

Cohort

1 ADa ApoE-�4 8.3 280, 169 (US) 6/500,568 1 Affymetrix 500K 9
2 ADa ApoE-�4 8.3 280, 169 (US) 18/317,208; 125/317,208 2 Illumina 300K 2
3 ADb ApoE-�4 ∼3–8 199, 191 (Norwegian);

214, 129 (German);
168, 69 (Greek)

1/500,568; 21/500,568;
34/500,568

1 Affymetrix 500K 9

4 PSP MAPT 3.3 288, 344 (US) 2/500,568 (best); 32 MAPT
SNPs in top 1,000 SNPs

168 Affymetrix 500K 10

5 PSP MAPT 3.3 288, 344 (US) 1/116,110 (best); 15 MAPT
SNPs in top 1,000 SNPs

38 Affymetrix 100K 10

6 SIDDT TSPYLc … 3, 100 (Amish) 6/10,555 13 Affymetrix 10K 3

NOTE.—In each case, SNPs in LD with the previously published associated locus were in the top 50 SNPs overall and would have been flagged for
validation.

a Diagnosed postmortem.
b Variously clinically diagnosed.
c Data are provided in the work of Puffenberger et al.30

curately rank and identify associated SNPs by use of a
pooling-based GWA design.

We first investigate the factors influencing pooling-
based and individual genotype–based GWA studies. For
individual genotyping, there are a number of factors that
influence the ability of GWA studies to detect genetic as-
sociations. These include but are not limited to: (1) the
allele frequency of the causal variant; (2) its odds ratio
(OR) or genetic relative risk; (3) the linkage disequilibrium
(LD) between the causal variant and probed SNPs; (4) the
number of individuals in each cohort; (5) the number of
probed SNPs in LD with the causal variant; and (6) the
analysis approach taken. Specific to pooling, there are ad-
ditional factors that influence the ability to detect a true
association. These additional factors include: (7) the pre-
cision of allele frequency measurements made by the SNP
genotyping microarray; (8) the accuracy of pool construc-
tion by pippetting; (9) the integrity of the pooled genomic
DNA; (10) the number of individuals pooled or overall
pooling strategy; and (11) the number of microarray tech-
nical replicates. Furthermore, population stratification
and admixture can mask true associations in all studies.
Beyond these additional factors, by pooling one loses the
abilities to compare subphenotypes of pools, to directly
measure genotype, and to detect gene-gene interactions.

However, perhaps the most important factor in favor of
pooling-based GWA studies is that this study design can
be completed for thousands of dollars, whereas individual
genotyping may require millions of dollars simply to com-
plete the first phase. There are numerous orphan diseases
and many small populations which cannot realistically be
studied using individual genotyping at this time, and a
pooling-based GWA study is an attractive, cost-effective
alternative. Unfortunately, the following questions have
not been fully addressed in the context of 1300,000 mark-
ers: (1) whether a pooling-based GWA can be effective; (2)
how one should design a pooling-based GWA study; (3)

what is the resolution of the study; and (4) how can one
analyze the data.

In this article, we investigate the factors that influence
effectiveness of a pooling-based GWA study, develop anal-
ysis tools for completing pooling-based GWA studies
(GenePool), and establish the practical capability of pool-
ing-based studies to identify the correct genetic locus us-
ing actual case-control pooling data with published as-
sociated loci. We show that pooling-based GWA studies
are a logical first step for studying many diseases with high
heritability and that they provide an opportunity to screen
for major genetic associations at a substantially lower cost.

Methods
Sample Pooling for Alzheimer Disease and Progressive
Supranuclear Palsy

Before quantitation, all DNA samples were checked for
quality using 1% agarose gel electrophoresis, and obvi-
ously degraded samples were excluded from the pooling
analysis. Individual genomic DNA concentrations of each
subject were determined in quintriplicate with the Quant-
iT PicoGreen dsDNA Assay Kit (Invitrogen) according to
the manufacturer’s instructions. The median concentra-
tion was calculated for each individual DNA. Alzheimer
disease (AD [MIM 104300]) pools were constructed as four
subpools divided by region or population, as shown in
table 1. Individual DNA samples were then added to their
respective pools in equivalent molar amounts. Each AD
subpool was created de novo a total of three times, to
control for pippetting errors, whereas each progressive su-
pranuclear palsy (PSP [MIM 601104]) subpool was created
five times. Each subpool contained identical samples per
cohort to better assess variance. In the “Discussion” sec-
tion, we describe potential advantages of each subpool
containing independent samples. Once created, each pool
was diluted to 50 ng/ml with sterile water, in preparation
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for the high-density SNP genotype assay. Sample DNA
amplified through the use of available whole-genome
amplification technologies was avoided because uneven
amplification in some samples may substantially reduce
power at regions of high amplification.

High-Density SNP Genotyping

Pools were assayed on the Affymetrix 500K platform fol-
lowing the Affymetrix protocol for individual genotyping.
Each AD case/control subpool was assayed in three tech-
nical replicates, and each PSP subpool was assayed in two
technical replicates for the Affymetrix 500K platform. The
US AD cohort was assayed in two technical replicates on
the Illumina 300K platform by combining replicate sub-
pools for each cohort and by following the protocol for
individual genotyping version 1.0 Illumina HumanHap
300K arrays (Illumina). For samples in the US AD cohort,
individual-genotype data were available for all samples in
the pool on the Affymetrix 500K platform.

For individual genotyping, SNPs were called using two
genotyping calling algorithms, SNiPer-HD and BRLMM
(Affymetrix). SNiPer-HD uses an expectation-maximiza-
tion training-based algorithm, and BRLMM uses a modi-
fied robust linear model with Mahalanobis distance
classifier (RLMM) algorithm.22 Both algorithms provide
superior calls over the standard dynamic modeling ap-
proach. However, SNiPer-HD uses only a subset of 380,000
SNPs with highly reliable calls. Only SNPs whose calls
agreed in both BRLMM and SNiPer-HD were used for anal-
ysis, with ∼99.8% of the reduced 380,000 SNP set in agree-
ment. Predicted allelic frequencies were calculated using
the k-correction method described by Craig et al.23 Train-
ing for k-correction values resulted from separate individ-
ual-genotype data from ∼900 Affymetrix 500K array sets
by the same laboratory. Comparing allelic frequencies pre-
dicted by pooling and measured by individual genotyping,
we experimentally determined that nine Affymetrix 500K
arrays measure allelic frequency with an SD of 2.5% with
the use of typical DNA. Importantly, that is the measure-
ment error of one cohort, and not the measurement error
associated with subtracting the difference between cases
and controls. Different reports find different accuracies,
which may be largely because of different qualities of start-
ing DNA. In this study, we used typical DNA, which in-
cludes samples that may have been stored in a freezer for
several months or several years as part of a repository. We
expect that, if freshly isolated cell DNA is used, accuracy
would be substantially higher and similar to the values
reported by other groups. Thus, it is possible that some
groups identify “better” results when high-quality starting
material is used.

Simulated Pooling

Pooling was simulated in Matlab 7.0 (MathWorks) on the
basis of experimental measurements of probe intensities

from pooled and individual samples run on Affymetrix
500K GeneChip Mapping arrays. Specifically, we gener-
ated paired case-control data sets equivalent to those ex-
pected by individual genotyping and if one were to have
measured allelic frequencies by pooling. Thus, the pooled
data sets are the individual-genotype data sets in which
noise consistent with pooling measurement error is
introduced.

Simulated data for each case-control cohort was gen-
erated independently, under the assumptions of the num-
ber of chromosomes pooled (twice the number of indi-
viduals), the number of SNPs assayed, the LD between
SNPs, and the minor-allele frequency (MAF) for each SNP.
In addition to probed SNPs, the “associated causal variant”
was simulated in the cases by indirect sampling from a
neighboring variant, assumed to be in LD with the asso-
ciated causal variant with and MAF of 10%. Spe-2r p 0.8
cifically, individual-genotype data were generated by mul-
tiple random sampling of a binomial distribution (binornd
function) with the use of 250,000 SNPs and under the
assumption of no LD between SNPs. In figure 1D, larger
SNP sets were generated under the assumption that
500,000, 750,000, and 1,000,000 SNPs were measured
with two, three, and four SNPs, respectively, in complete
LD.

A control data set and case data set were generated by
pooling genotypes under an assumption of Hardy-Wein-
berg equilibrium. For both case and control data sets,
pooled measurement noise was separately added by ran-
domly sampling a normal distribution (normrnd func-
tion), under the assumption from the individ-j p 2.5%
ual-genotype data sets. The simulated pooled error was
approximately equal to that experimentally observed in
nine Affymetrix 500K arrays. Both cases and controls were
each treated as single pools, rather than subpools. In each
simulation, the rank of the “associated SNP” to the causal
variant was recorded for both simulated individual ge-
notyping and simulated pooling. If multiple SNPs were in
LD with the associated causal variant (as in fig. 1D and
1E), we took the best rank of these SNPs. The number of
SNPs in LD with an associated causal variant never ex-
ceeded four SNPs.

In figure 1E, variable LD between all SNPs was added to
the simulations. First, all SNPs were assigned an value2r
to the preceding and following SNP. Values for were2r
selected from a normal distribution in which 70% of the
SNPs exceeded an of 0.8 and the average was 0.85.2 2r r
This distribution is roughly equivalent to that of the Af-
fymetrix 500K on CEPH samples. SNP data were then se-
quentially constructed across 500,000 SNPs. Specifically,
genotype data for the first SNP were generated by random
sampling from a binomial distribution. Genotype data for
all subsequent SNPs were then sequentially generated by
adding genotype information from the neighboring SNPs
and random sampling from a binomial distribution, ac-
cording to the defined .2r



Figure 1. Simulations of the effectiveness of pooling. The expected rank of an associated SNP measured by pooling is compared with
its rank ascertained by individual genotyping. A, Expected rank of the associated SNP measured by pooling (red circles), as the causal
variant OR is increased from 1 to 5, compared with the expected rank ascertained by individual genotyping (blue squares). With lower
rank, associated SNPs are more likely to be resolved. The assumptions are that the LD between the measured SNP and causal variant
has an of 0.8, that inaccuracy due to pooling follows a normal distribution with (approximately equivalent to nine2 1/2r V p 2.5%p

Affymetrix 500K arrays with average-quality DNA), that 250,000 SNPs are genotyped with an average MAF of 25%, that 400 individuals
are in each pooled cohort, and that there is only 1 SNP per haplotype (thus, all SNPs are completely independent). B, Same as panel
A, but the OR is fixed at 3 and N varies from 100 to 400. C, Same as panel A, but with the assumption that the probe intensity
measurement accuracy varies from 1% to 5% and the OR is fixed at 3. D, Same as panel A, but the OR is fixed at 3.0, the number of
SNPs in each haplotype block increases from 1 to 4 (SNPs within a block have ), and the number of genotyped SNPs is increased2r p 1
from 250,000 to 1,000,000. In this case, the expected rank is the best rank of all SNPs (in the associated haplotype). E, Further
examination of how LD allows for identification of functional variants with lower OR. Solid squares and circles represent simulation
under a scenario in which 70% of the SNPs have a pairwise LD with (similar to Affymetrix [Affy] 500K), whereas outlined squares2r 1 0.8
and circles are the scenario in which there is no LD between (b/t) SNPs. In all cases, these represent data simulated using multiple
sampling of a binomial distribution that assumes normal distribution for pooled measurement and Hardy-Weinberg equilibrium. Each
data point is the average rank of 75 simulations.
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PSP Samples

Cases and controls were from a previously described case-
control series, and institutional review board (IRB) approval
was obtained for all human subjects.24 Case patients chosen
for pooling had a primary pathological diagnosis of PSP
according to standard criteria ( ).25,26 The case pa-n p 288
tients had a mean (�SD) age at death of years and75 � 7.6
were 51% male. Cognitively normal, age- and sex-matched
controls were collected under the Normal and Pathological
Aging Protocols at Mayo Clinic Scottsdale ( ). Alln p 344
patients and controls used in the study were white.27,28

AD Samples

Four white case-control cohorts were available for AD:
three clinically characterized cohorts and one postmortem
clinically and neuropathologically characterized cohort,
as summarized in table 1. IRB approval was obtained for
all human subjects. Both individual-genotype data and
pooled-genotype data were available for the US postmor-
tem cohort. DNA samples were extracted from brain tissue
in 398 brain donors, who were at least 65 years of age at
the time of their death. The donors included 242 patients
who satisfied clinical and neuropathological criteria for
the diagnosis of AD and 156 persons who did not meet
neuropathological criteria for AD. All the brain donors
were white.

For the German cohort, AD patients were recruited from
the Department of Psychiatry, University of Bonn. Pa-
tients were diagnosed according to DSM-IV, which was
supported by clinical examination, detailed structured in-
terviews, neuropsychological testing, cognitive screening
done by Mini-Mental State Examination, and neuroim-
aging studies. Healthy controls were recruited with the
support of the local census bureau and the regional Board
of Data Protection (Nordrhein-Westphalia, Germany), and
diagnosis was done by structured interviews and neuro-
psychological testing. All patients and control subjects
gave informed consent for participation in the study. The
study protocol was approved by the Ethics Committee of
the Faculty of Medicine at the University of Bonn.

For the Norwegian cohort, patients were recruited from
the geriatric and neurological outpatient clinics at St.
Olav’s Hospital in Trondheim and from local nursing
homes, as part of a study of the genetics of dementias in
central Norway, as described elsewhere.29 In brief, guide-
lines given in the International Classification of Diseases
(ICD-10) were applied for diagnosing of dementia, with
patients who received the diagnosis of AD fulfilling Na-
tional Institute of Neurological and Communicative Dis-
eases and Stroke/Alzheimer’s Disease and Related Disor-
ders Association (NINCDS-ADRDA) criteria. Controls from
the same geographic area were recruited from societies for
retired people or were spouses of patients with dementia.
All controls had subjective good memory and no first-
degree relatives with dementia, and diagnosis was done
using a brief interview. For the Greek cohort, patients with

AD were recruited from the Department of Neurology,
University of Thessaloniki. Patients fulfilled the NINCDS-
ADRDA criteria for probable AD after clinical examination
and neuropsychological testing. Healthy controls were the
patients’ spouses and were cognitively intact as assessed
by neuropsychological examination.

Sudden Infant Death with Dysgenesis of the Testes Syndrome

For sudden infant death with dysgenesis of the testes syn-
drome (SIDDT [MIM 608800]), samples were genotyped
and pooled as part of a separate study. Previously gener-
ated data were used to provide additional validation met-
rics for analysis procedures.23,30

GenePool Software

GenePool is written in C�� (gpextract) and C (gpanalyze).
These programs can be run individually using command
line Unix. GenePool can be downloaded from the Gene-
Pool Web site. The software is currently provided as a pre-
compiled binary for X86-Linux, and as source code. Man
pages for all executables are bundled in both source and
binary distributions and are also available from the
GenePool Web site in PDF and HTML formats for online
viewing. The SIDDT10K data set for Affymetrix is provided
for download.

Data Transformation

In the Affymetrix platform, each SNP is interrogated by
6–10 probe quartets, where each quartet contains a perfect
match (PM) probe for the A allele, a PM probe for the B
allele, a mismatch (MM) probe for the A allele, and an
MM probe for the B allele. A relative allele score (RAS) is
calculated for each quartet. We considered each RAS1..10 to
be an independent measure of allele frequency, where i
refers to a quartet. RAS is equivalent to the ratio of A allele
to A and B alleles for PM probes. That is, RAS pip1..10

. In the Illumina platform, each SNPPMA /(PMA � PMB )i i i

is interrogated by a variable number of beads, with an
average of 16 beads per SNP on an Illumina 300K
HumanHap BeadChip. Unlike the Affymetrix platform,
beads are assumed to have similar hybridization, and RAS
is a one-dimensional vector ( ). For each bead, red andi p 1
green channel data corresponding to the two SNP alleles
are acquired and are stored in 10 text files within a
BeadStation-specified data folder. Both channels undergo
a simple normalization by dividing the overall mean in-
tensity value for that channel, because of the observation
that the green channel has overall greater intensity than
that of the red channel. We recognize that future research
efforts may lead to development of more-advanced global
normalization methods, noting that calculation of RAS
values provides for SNP-specific normalization. Lastly, if
any single SNP is probed by fewer than five beads, this
SNP is discarded because this SNP measurement will have
high variability due to under sampling. Typically, fewer
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than a few hundred SNPs were discarded because of this
filter.

Evaluation of Test Statistics

Multiple test statistics were evaluated for their effective-
ness in ranking SNPs. Effective ranking was determined
using pools composed of samples that previously had been
individually genotyped on the same Affymetrix 500K plat-
form. Ranking SNPs was done by difference in allelic fre-
quency, not by P value calculation. The test statistics eval-
uated were silhouette scores,31 trace criteria, a multivariate
t statistic, determinant criteria, principal-components–
based linear classifiers, bolstered linear classifiers, a cen-
troid Dunn index, and a Hausdorff Dunn index.32 Imple-
mentation of each test statistic is available on request as
supplemental data, although not all methods were incor-
porated into GenePool. Ranking by silhouette score was
consistently found to be the most effective method, as
measured by correct identification of the greatest number
of top 10, 100, 500, and 1,000 SNPs by individual geno-
typing with the use of the top 10, 100, 500, and 1,000
SNPs for the test statistic on data from pooled arrays. This
method of evaluation was used because it is similar to how
a research group might proceed in a pooling-based GWA.
Additional metrics were used, including identifying the
greatest number of top 0.1%, 1%, and 5% of SNPs, with
similar results. We further investigated different distance
measures for the silhouette statistic, finding that Man-
hattan distance generally outperforms Euclidean distance,
since the Euclidean distance measure does not preserve
directionality.

Comparison of Allele Frequencies by Pooling
with Individual-Genotype Data

Pooling accuracy was investigated by calculating the pre-
dicted allelic frequency by use of the k-correction method.
A median difference of 2.8% was observed. Other methods
are emerging,33 but we used the approach applied by Craig
et al.,23 which uses heterozygote and homozygote data
building from the original employment of the k-correction
factor.6 For training of values, individual-genotype data
were used for SNPs for which the 900 training samples
showed at least five each of the three possible call states
(AA, AB, and BB). Only SNPs with 190% of samples called
and arrays with 185% call rates were used.

Multimarker Statistics

Multimarker statistical methods for pooled data are rap-
idly evolving and are an ongoing area of research.1,11,34 We
have implemented a sliding-window statistic of mean or
median rank across the genome for a fixed window size.
This method allows prioritization of regions that have sev-
eral neighboring high-ranking SNPs.1 As the number of
genotyped SNPs on a commercially available platform ex-
ceeds 1 million, multimarker statistics will become an in-

creasingly important noise-reduction approach. However,
accomplishing this goal will require yet-to-be-developed
methods for merging data from separate platforms, such
as use of the k-correction factor.

Results
Practical Challenges of Identifying Associations by Use
of a Pooling-Based GWA Study Design

One of the least appreciated aspects of pooling-based GWA
studies is that allelic differences between cohorts must be
measured and sorted for hundreds of thousands of SNPs.
We examine this aspect by anecdotal example, then by
theory, and again by simulation. After these sections, we
describe development of software and analysis tools for
conducting of pooling-based GWA studies. Finally, we re-
port experimental validation of these methods on com-
plex disorders with published associations.

Example

In an anecdotal example, we pool 400 individuals as part
of a case cohort and 400 individuals as part of control
cohort. We then measure 250,000 SNPs for differences in
allelic frequencies between cohorts. By multiple sampling
of 250,000 SNPs for 400 cases and 400 controls, we can
reasonably expect that at least one SNP will have a 15%
difference between cohorts. The second best SNP may
have a difference of 14.9%, the third may have a difference
of 14.8%, and so forth. However, the accuracy of our pre-
dicted differences (by use of measurements of pooled da-
ta) is typically only within 1%–3% of the true allelic
frequency.1,35 Consequently, if our predicted allelic fre-
quency is off by 2%, the predicted rank may move from
1st of 250,000 to 800th of 250,000, or vice versa. Since
there may be only a few truly associated SNPs and 250,000
SNPs are being measured, false-positive and false-negative
results due to measurement error are a major concern.
Realistically, an inaccuracy of 1%–3% could lower the rank
of a truly associated SNP below the threshhold for inclu-
sion in phase II of a GWA study.

Theory

We now review theoretical considerations related to con-
trolling the variance and to the design of case-control
pooling-based studies. We note that more-extensive re-
views of DNA pooling theory are available elsewhere and
that we primarily develop concepts directly relating to
commercially available high-density SNP genotyping
microarrays.11,21,36,37

Controlling measurement variance is essential to iden-
tification of true associations in the context of multiple
sampling of �250,000 SNPs. In its most simplistic form,
the total variance (VT) for an allelotyped SNP in a cohort
of pooled individuals is the sum of variance arising from
sampling a limited number of individuals (the sampling
variance [Vs]) and the experimental variance observed
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Figure 2. Stages of phase I of a pooling-based GWA. A, In stage 1, DNA is quality checked, quantified, and placed into subpools.
The number of technical replicates and subpools will be study dependent, although theoretical considerations are evaluated in the
discussion. B, In stage 2, paired probe-intensity data from both alleles is transformed and/or normalized into a singular value, generally
correlating with allelic frequency. RAS values are one type of normalization, generally referring to the proportion of overall signal arising
from one allele. C, In stage 3, each set of transformed-value scores are evaluated and are ranked by a test statistic (Stat.) to provide
a measure of association between cohorts. D, In stage 4, multimarker statistics are calculated, leveraging LD between SNPs to reduce
noise or to incorporate external information, such as haplotype data.8,23,34

from allelotyping the pooled DNA (the pooling variance
[Vp]):

V p V � V . (1)T s p

Because of differences in allelic frequency and assay per-
formance, a wide spectrum of values for VT is observed
among the thousands of SNPs on a microarray.38 Reducing
VT increases power and can be accomplished by reducing
either Vp or Vs. For a given SNP, Vs is reduced by increasing
the number of individuals, since , where�1V p f(1 � f)(2N)s

, or the number of total individuals per cohort;N p x # y
x is the number of individuals per subpool; y is the number
of subpools; and f is the SNP MAF. Importantly, Vs does
not change by splitting the cohorts into numerous in-
dependent subpools. Conversely, Vp arises from numerous
known and unknown factors, such as pool construction,
assay, hybridization, and chip quality. Although each of
these can be reduced by careful experimentation, Vp is
most obviously reduced by use of more replicates—for ex-
ample, , where m is the number of replicates2V p j /mp p

and is the final sum of variances due to pooled SNP2jp

allelotyping. Characteristic of current commercial SNP ge-
notyping arrays, the major portion of cost and variance
for a pooling-based GWA occurs near or before the final
step of array hybridization. Consequently, previously de-
scribed approaches to creating technical replicates of the
more expensive preceding step (e.g., PCR) to recover
power lost to pooling are not cost-effective for commer-
cial SNP genotyping microarrays.11 Since pooling design
choices of subpools and technical replicates (as in fig. 2A)
do not directly influence power in SNP microarray pooling
studies, we return to the advantages of both these strat-
egies in the “Discussion” section.

By pooling, one loses the power to detect associations,
and this can be intuitively described as , or the equiv-∗N
alent sample size remaining after pooling of N individuals.
As defined by Barratt et al.,11 the relative sample size (RSS)
is the proportion of (effective sample size) to N (pooled∗N
sample size), or . RSS can also be derived using∗RSS p N /N
Vs and Vp. The total variance (VT) is described by equation
(1), where . Conversely, by individual�1V p f(1 � f)(2N)s

genotyping, VT is dependent only on sample variance—
that is, , where is the unknown ef-∗ �1 ∗V p f(1 � f)(2N ) NT
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fective sample size that will result in the equivalent VT

value observed when N samples are pooled. Equating VT

for both, we find , where∗ �1V � V p f(1 � f)(2N ) V ps p s

. This can be simplified to two equivalent�1f(1 � f)(2N)
equations:

∗N p N # V /(V � V ) (2)s s P

and

RSS p V /(V � V ) . (3)s s P

Although this particular derivation of and RSS provides∗N
us significant insight into the amount of power lost to
pooled allelotyping, it does not entirely allow us to de-
termine the resolution of a pooling-based GWA. SNPs on
genotyping arrays are not independent, but rather cor-
relate from LD. Analytical solutions for assessing resolu-
tion of a pooling-based GWA are not clear in the context
of variable genomewide LD21,37; thus, we now move to
simulated data sets.

Simulation

To more accurately assess whether sufficient information
remains after introduction of measurement variance to
identify the most substantial associations, or “low-hang-
ing fruit,” we analyzed simulated data sets. These simu-
lations establish whether pooling can be effective, deter-
mine which variables most influence its effectiveness, and
establish expectations for pooling-based GWA studies.
They also allow us to heuristically test experimental var-
iables that do not have clear analytical solutions, such as
the impact of variable genomewide LD. Data sets were
simulated by first generating “true” genotype data sets and
“pooled” data sets, as follows (and described in greater
detail in the “Methods” section): a true genotype set was
constructed by multiple sampling of a binomial distri-
bution for 250,000 SNPs for 400 cases and 400 controls
(800 chromosomes each) and by combining these samples
into simulated pools under an assumption of Hardy-Wein-
berg equilibrium. A single “associated” SNP was simulated
in LD ( ) with a causal variant at a defined OR.2r p 0.8
Measurement error was randomly added to each SNP, fol-
lowing a normal distribution and . The num-1/2V p 2.5%p

ber of SNPs, the number of samples, and pooled variance
were similar to those used later in experimental validation.

Inspecting figure 1A, we see that, in these simulations,
one should be able to detect associations with an OR 1

by taking the top 0.5% (or 1,250 SNPs) to phase II.3.5
However, this scenario represents a conservative calcula-
tion, because we have assumed all SNPs are independent
of one another, whereas on both the Affymetrix 500K and
Illumina 300K, ∼70% of SNPs are in LD with one another
at an .39 In figure 1C, we fix OR at 3.0 and show2r � 0.8
that as the number of arrays are doubled from 9 to 18, we
can resolve genetic associations with using theOR 1 3.0

best 100 SNPs by allelic frequency difference. In figure 1B,
we see that increasing the number of samples increases
resolution, although there appear to be diminishing re-
turns as more individuals are added. This occurs as the
sampling variance (Vs) decreases to levels at or below the
pooled variance (Vp). Finally, in figure 1D and 1E, we in-
vestigate the effect of adding more SNPs that are in LD
with one another. In figure 1D, we progressively increase
the total number of SNPs from 250,000 to 1,000,000, in
250,000 increments. However, we assume new SNPs are
in full LD with their neighbors, creating 250,000 perfect
haplotype blocks. Effectively, at 250,000 SNPs, there is 1
SNP per block; at 500,000, there are 2 SNPs in complete
LD per block; at 750,000, there are 3 SNPs per block; and,
at 1 million, there are 4 SNPs per block. As before, one
haplotype block (of 250,000 SNPs) is biased by a true as-
sociation ( ) indirectly probed by all SNPs on that2r p 0.8
block at a defined OR. Although this is undeniably an
idealized scenario, it does allow us to demonstrate the
point that, even though we are genotyping more SNPs,
we are more likely to identify a SNP in the correct hap-
lotype block within the top 1,000 SNPs, because of the
redundancy of information content. Finally, in figure 1E,
we move away from the idealized scenarios to simulations
that are very similar to many ongoing GWA studies. In
these simulations, we add variable LD across the genome,
following a normal distribution, such that that 70% of
SNPs are in LD with and the mean is 0.85. In2 2r � 0.8 r
effect, this scenario is very similar to the overall distri-
bution of pairwise LD observed for SNPs on the Affymetrix
500K platform in the CEPH population.40 Likewise, the
error we have introduced by pooling ( ) is sim-1/2V p 2.5%s

ilar to having nine Affymetrix 500K replicates per cohort.
From figure 1E, we show that, in simulation, we can easily
identify associations with an OR between 2.5 and 3.0 by
taking the top 1,250 SNPs to phase II of a GWA study. The
above values, such as sample size and replicate arrays, will
be dependent on the study and were chosen because they
closely aligned with our experimental validation in later
sections. We explore alternate study designs in the “Dis-
cussion” section.

Conclusions of Simulated Pooling

From these sets of simulations, four findings are imme-
diately clear: (1) one should be able to detect associations
with an OR of at least 2.5, and lower OR associations may
be detectable depending on design; (2) probe precision
(i.e., variance) greatly influences power; (3) there is a point
beyond which increasing the pool size becomes less effi-
cient (as Vs decreases to Vp); and (4) increasing the number
of probed SNPs increases the ability to detect association.
This last finding is particularly intriguing, since there are
11,000,000 nonredundant SNPs on the combined Affym-
etrix 500K, Affymetrix 100K, Illumina HumanHap 550K,
and Illumina 100K panels.
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Figure 3. Example of multimarker statistics applied to a pooling-based GWA. PSP is a complex rare disorder with one consistently
confirmed genetic risk factor, the MAPT H1 haplotype, with an allelic OR of 3.3. By use of a sliding-window calculation of mean rank
across adjacent SNPs, the best-ranked window sits directly over MAPT when genotyped on the Affymetrix 100K and 500K platforms,
and this was true for all window sizes between 3 and 31. In practice, as the window size is increased, the effectiveness of sliding-
window calculations using a fixed window size will decrease, since larger window sizes will include random SNPs beyond the underlying
associated haplotype block.

Development of Analysis Tools

Given that pooling should theoretically allow for detec-
tion of major associations, lack of analysis tools is a major
limiting factor in completion of pooling-based GWA stud-
ies. Indeed, only a few software tools (e.g., Pooled DNA
Analyzer34) currently address pooled microarray data.
Consequently, we developed GenePool, an analysis soft-
ware package for pooling-based GWA studies that has been
validated on several data sets with previously published
associations. GenePool and its source code can be down-
loaded from the Web and is free for noncommercial use.
Detailed descriptions of the analysis approaches are pro-
vided in the “Methods” section. We summarize the prin-
ciples of analysis in figure 2 into three stages: (1) data
transformation and normalization, (2) SNP ranking by a
test statistic, and (3) multimarker statistics. At each stage,
there are a wide variety of analysis methods that could be
applied, and only a relatively small selection has currently
been implemented in GenePool. Consequently, an effort
has been made to compartmentalize GenePool’s code so

that additional algorithms can easily be added, to extend
its functionality, by individual groups.

Stage 1 of analysis is raw-data transformation. SNP mi-
croarray data begins with probe intensity data for both
alleles. Effective data transformation ensures that addi-
tional information is not lost. For example, Affymetrix
uses 6 to 10 probe pairs for each SNP, and each pair in-
terrogates the SNP at a different position within the probe
oligo sequence. Consequently, each of the probe pairs has
unique hybridization properties. In the case of Affymetrix
data, we find it most effective to treat each probe pair as
an independent measure and to discard mismatch data.
We transform each probe set pair into an RAS value, which
is the ratio of the signal from the A allele PM probe to the
sum of A and B allele PM probes. Independent transfor-
mation avoids introduction of unnecessary noise, by av-
eraging independent hybridization events or adding in
mismatch variance. Mismatch data are discarded because
baseline subtraction by use of mismatch data unnecessar-
ily adds the noise associated with the probe into the
composite score,41 and future Affymetrix SNP genotyping
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arrays may not contain mismatch probes. Data transfor-
mation will be platform specific and, perhaps, study spe-
cific. For example, use of Illumina HumanHap arrays re-
quires normalization of two-channel data, where the
intensity of the green channel is substantially greater than
that of the red channel. Alternative transformations, such
as , are also possible and may be desirablev p arctan(B/A)
for some research groups. Lastly, the different hybridiza-
tion properties of each SNP can be corrected for by cal-
culation of the k-correction factor for each SNP that fits
individual-genotype data to 0% (minor-allele homozy-
gotes), 50% (heterozygotes), and 100% (major-allele ho-
mozygotes) pooled equivalents.6,7,23 In the current Gene-
Pool, a custom k-correction file may be loaded. However,
we note that, even without this file, significant associa-
tions can be easily found, as demonstrated in the “Ex-
perimental Validation of Case-Control GWA Studies” sec-
tion and as suggested by other groups.20

Stage 2 of analysis is ranking by test statistic. From stage
1, we will have one or more RAS (or comparable trans-
formation) values for each SNP for both cases and controls.
For a given SNP, some RAS values may be highly infor-
mative, whereas others may be less informative. Also, a
SNP probed with different sequences (e.g., quartets 1..6
with different offsets) may have highly precise RAS1..6 val-
ues that exhibit different absolute values, because of dif-
ferential hybridization with each probe quartet. With in-
dependent measures of the same SNPs, multidimensional
test statistics are likely to be more appropriate. We eval-
uated Dunn index, linear classifier, principal-components
analysis, trace criteria, and silhouette scores, using data
from an AD case-control study (280 cases and 169 con-
trols) in which both pooled data and individual-genotype
data were available (Affymetrix 500K). Test statistics were
evaluated by their ability to correctly rank SNPs that in-
dividual genotyping had shown to have the most signif-
icant allele frequency differences between cases and con-
trols. Overall, we found that silhouette scores, previously
employed for SNP probe intensity analysis,31 performed
the best at ranking the SNPs. As we elaborate further in
the “Discussion” section, other test statistics that derive
from the underlying variance will be implemented as val-
idated. However, in the context of ranking 1250,000 mark-
ers, the risk of statistical artifacts with untested (even if
theoretically sound) test statistics requires an extensive
validation process.

Stage 3 of analysis is multimarker analysis. Whereas
stage 2 analyzed markers independently, a multimarker
statistic may allow us to smooth out measurement noise
and identify disorders with lower OR by leveraging LD
between SNPs. A sliding-window statistic of mean rank by
a test statistic is currently implemented for a fixed window
size across all windows throughout the genome. This
method has previously proved effective, although it is
conservative because of the fixed window size and does
not take into account haplotype block structure or the
genomic or recombination distances between adjacent

SNPs.11 Multimarker statistics that leverage haplotype in-
formation or LD data to reduce noise are clearly a major
area of active research8,11,34 and will be implemented with
future releases. However, given the highly variable LD
across the genome, future validation data sets will need
to be generated to evaluate the effectiveness of these ap-
proaches and to identify any potential for statistical ar-
tifact. Examples of future validation data sets may include
pooled parents-child trios for which individual-genotype
data are available and phase can at least be partially
calculated.

Experimental Validation of Case-Control GWA Studies
of Disorders with Known Associations

As shown in table 1, we experimentally studied three dis-
eases with previously published associations by using
pooling-based GWA and our GenePool analysis tools: (1)
AD, both antemortem-diagnosed cases and postmortem-
diagnosed cases, on the Affymetrix 500K and Illumina
300K platforms; (2) PSP, with the 500K and 100K plat-
forms; and (3) SIDDT, with the 10K platform.23 Each of
the three studies tests a different factor influencing the
ability of pooling to detect genetic associations. AD has a
common variant, APOE-�4, with a strong OR but is only
interrogated marginally ( ) by one SNP on the Af-2r p 0.57
fymetrix 500K platform and by two SNPs on the Illumina
300K platform. We generated data for one paired cohort
diagnosed postmortem where diagnosis was certain (OR
for APOE-�4 is 8.13) and three cohorts with clinically di-
agnosed probable AD (OR for APOE-�4 is ∼3–8).42,43 In PSP,
the frequency of the extended microtubule-associatedpro-
tein tau (MAPT) H1 haplotype is significantly increased in
PSP cases with an OR of 3.3 in our cohort.24 The MAPT
H1 haplotype is covered by ∼168 SNPs on the Affymetrix
500K platform and 38 SNPs on the 100K platform, because
of extension of the H1 and H2 haplotypes by hundreds
of kilobases due to a locus inversion, which limits recom-
bination across this region.44 Studying this disease tests
the assertion that interrogation of multiple SNPs in LD
will allow us to better detect associations. SIDDT is not a
complex disorder but has desirable features. It has been
studied previously,23 it has a known genetic basis, and it
has multiple SNPs in LD.

Single SNP rankings for AD, PSP, and SIDDT are shown
in table 1. In cohorts with both antemortem- and post-
mortem-diagnosed AD, the SNP closest to APOE-�4 is
ranked in the top 100 of 500,568 SNPs and is ranked 6th
in the postmortem-diagnosed cohort for the Affymetrix
500K platform. This is a highly encouraging result, be-
cause the APOE region is characterized by weak LD and is
covered by only one SNP on the Affymetrix 500K plat-
form, rs4420638, which is ∼14 kb away from the APOE-
�4 haplotype block, with an of 0.57. Although ranked2r
slightly lower (18 and 125) on the Illumina 300K platform,
two SNPs identify the APOE-�4 haplotype on the same
pooled samples. In PSP, on both the 100K and 500K plat-
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forms, the MAPT region was ranked in the top two SNPs.
Multimarker statistics (fig. 3) showed the MAPT locus to
be the most significant locus. For SIDDT, SNPs associated
with the TSPYL locus ranked it in the top 10 regions.

On the basis of these data sets, our experimental results
confirm the expectations of the theoretical simulations
and validate the analysis procedures used in GenePool.
Furthermore, it is clear that pooling-based GWA studies
that use existing SNP genotyping technology can identify
major genetic associations with disease.

Discussion

In this article, we demonstrate, both experimentally and
theoretically, that pooling-based GWA studies are effective
at identifying major genetic contributions to disease. Fur-
thermore, we discuss a general framework for pooling-
based GWA studies and offer GenePool as a software tool
for the analysis of pooling-based GWA studies.

In figure 2 and in the “Results” section, we investigated
study design of a pooling-based GWA. Frequently asked
questions about study design are (1) Should a cohort be
broken down into subpools or should one have fewer large
pools? (2) How many technical replicates should one con-
duct per pool? and (3) What is the resolution of a partic-
ular design? The answers to these questions will largely
depend on the study population, the funding resources,
and the characteristics of the hereditable disorder or phys-
iological trait.

Addressing the first two questions, on the basis of our
own retrospective analysis of experimental data and the
theoretical framework presented earlier, we suggest study
designs with multiple subpools containing equal number
of samples, each run in triplicate technical replicates (as
illustrated in fig. 2). First, technical replicates allow one
to measure variance arising from pooled allelotyping (Vp),
to eliminate poorly performing SNPs, and to provide qual-
ity-control metrics for identifying failed assays. Second,
although the use of subpools does not recover power with-
out the use of more overall microarrays, one can approx-
imate the total variance (VT) for each cohort. Knowing VT

is theoretically attractive because one can calculate the
intuitive test statistic, , directly1 2 �1/2T p DRAS # (V � V )p T T

from probe intensity differences, whereas accounting
for sampling variance depends on allelic frequency and
copy-number changes. For the test statistic Tp, DRAS p

and and are the total variances be-1 2 1 2FRAS � RAS F V VT T

tween cohorts 1 and 2, respectively. As an example, X-
chromosome SNPs are sampled less often than are au-
tosomal SNPs, because XY males have only one X
chromosome and two of each autosome, resulting in a
bias for large allelic frequency differences on the X chro-
mosomes compared with the autosomes. Since VT includes
Vs, one accounts for these biases. Although the Tp statistic
has theoretical potential, in the context of �250,000 SNP
measurements, its use leads to biased ranking, with pref-
erential selection of SNPs with underestimated values for

VT as a result of low relative sampling. However, one could
use this statistic to reorder the top few hundred or few
thousand SNPs ranked from a stage 1 analysis that used
an empirically selected test statistic as currently imple-
mented in the GenePool program.

The optimal number of arrays to be used in the pooling
portion of a GWA is dependent on a complex number of
variables not entirely amenable to easy solution. Zhao and
colleagues have analytically derived formulas for studying
some of these variables in the absence of LD.21,37 In the
present study, we used simulation to include the effect of
variable LD and probe variance. Although use of nine rep-
licate arrays was effective at identifying the APOE-�4 as-
sociation in AD or the MAPT association in PSP, more
replicate arrays may be required to detect associations with
smaller genetic relative risk. Given the potential com-
plexities of applying the above-described methods, we
now present a simple approach for approximating the ef-
fectiveness of a pooling-based GWA, given a set number
of arrays. First, RSS was shown to be equal to the propor-
tion of sampling variance to total variance (eq. [3]). In-
tuitively, RSS is equivalent to the percent of the original
sample remaining after pooling. All these variables are
straightforward to calculate, since �1V p f(1 � f) # (2N)s

and . Although we have seen decrease2 �1 2V p 2j # m jp p p

with Affymetrix optimization of the 500K assay, ap-2jp

proximates at in these and other studies.35 Other�35 # 10
defined variables are m, for the number of arrays; f, for
allele frequency (∼0.25); and N, for the number of pooled
samples. Apparent from these formulas, as more microar-
rays are added, more power is recovered, having a signif-
icant effect when and . With 400 casesV p V RSS p 50%s p

and 400 controls, this occurs at 21 replicate arrays per
cohort. Additionally, by calculating , where∗ ∗N N p N #

(eq. [2]) or , one can use widely∗V /(V � V ) N p N # RSSs s p

available power calculators, such as Quanto,45,46 to ap-
proximate the power or resolution of a pooling-based
GWA study. Although it was not experimentally con-
ducted here, one could reasonably have power to detect
80% of genetic associations with ORs 12.0 by using 20
replicate Affymetrix 500K arrays per cohort and 400 in-
dividuals per cohort.

Of course, as multiple genotyping platforms simulta-
neously emerge, one can leverage nonredundant SNP con-
tent. Between Affymetrix 100K and 500K platforms and
Illumina 550K and 100K platforms, there are 11 million
nonredundant SNPs being genotyped. With this density,
redundant SNP content increases resolution of a pooling-
based GWA by decreasing measurement noise on highly
correlated neighboring SNPs in LD and insures that there
are very few gaps in overall genomewide SNP coverage.
Merging platforms is likely possible by use of platform-
specific k-correction factors, and thus substantial utility
exists in emerging databases that catalog allele-specific
preferential amplification and/or hybridization for ge-
notyping array platforms.47,48 Furthermore, as many in-
dividual-genotyping GWA studies commence with one
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platform that covers only 70%–80% of the genome,39

pooling-based GWA studies on an alternate platform pro-
vide a low-cost mechanism to insure that no major as-
sociations are missed in the remaining portions of the
genome. Similarly, pooling may present an opportunity
to assess critical nonsynonymous SNPs more directly (e.g.,
by use of a 20,000 panel) than is accomplished by indi-
vidual genotyping using Illumina 550K or Affymetrix
500K microarrays.

Because of the power requirements, substantial funding
is required for completion of phase I of a GWA study. This
may be one of the major reasons why only a few discov-
eries have been made using high-density SNP genotyping
technology. Interestingly, the few discoveries made using
this design have often been associations of large genetic
effect. One of the more prominent discoveries was asso-
ciation of a common variant in complement H variant
with age-related macular degeneration (AMD), with an OR
between 2.5 and 5.49 These types of findings are within
reach and perhaps could be discovered by a pooling-based
GWA.

It is unknown why many other diseases, disorders, or
complex traits have common variants of large effect that
remain undiscovered. AMD was not identified through
multiple linkage studies and was only under the shoulder
of a major linkage peak but was easily identified by a GWA
study.49 Without a strong understanding of gene function,
we may not be able to pick the correct gene by using a
hypothesis-driven approach. Pooling-based GWA studies
are a viable alternative for screening disorders for common
variations of large effect without onerous funding require-
ments. Use of 20 replicate arrays requires !$5,000 yet
could lead to a major discovery. The alternative to indi-
vidual genotyping requires 10-fold more funding, some-
thing that may be out of reach for many orphan diseases,
or diseases specific to isolated populations. We have dem-
onstrated a theoretical framework by which these ques-
tions may be investigated.

In summary, we could detect published genetic associ-
ations in a monogenic disease, a rare complex disease, and
a common complex disease by using a pooling-based
GWA. We anticipate major improvements in the methods
and analysis tools over the next few years, with integration
of pooled data from multiple platforms using combined
densities of 11 million genotyped SNPs. Data analysis is
a major obstacle for completion of these studies, and we
have created a software tool, GenePool, for this purpose
and have made its source code available for development
of new approaches. We expect these tools to provide a
mechanism for rare and common disorders and traits in
a variety of specific populations to be rapidly and cost
effectively investigated using a hypothesis-free GWA study
design.
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